Overview

Project Technology: Development of Enabling Composites technology for Submarine Applications

TOTAL MANTECH INVESTMENT: $1,176,000

Objective

Like other programs in the Department of Defense (DOD), the VIRGINIA Class submarine (VCS) program and the OHIO Replacement (OR) Class submarine program face substantial financial challenges due to the current fiscal environment. OR is additionally challenged because of considerable procurement cost for the lead ship and target costs for ships 2-12 of the class. Reaching the target procurement costs for the OR platform are only attainable through cost-effective designs that save money over the entire life of the submarine and manufacturing approaches that reduce acquisition costs. The objective of this project was to develop and validate repeatable manufacturing approaches, and their associated cost and weight impacts, for submarine applications. This project used a systems-engineering approach to determine groups of components with similar requirements that can then be mapped to enabling technologies and/or combination of technologies. Enabling technology and manufacturing approaches to be considered under this effort included: out-of-autoclave (OOA) processing to enable efficient use of carbon fiber; multi-material (glass/carbon hybrid) solutions for cost / weight reduction; integrated manufacturing of structural-acoustic windows; integrated manufacturing of laminates with structural damping treatments; and integrated manufacturing of laminates with polymer coatings.

Payoff

Significant cost and weight has been removed from both platforms by replacing conventional metallic and/or traditional GRP components with state-of-the-art composite structure. While innovative composite materials and the integrated manufacturing opportunities that they afford offer cost / weight reduction opportunity, a platform-wide analysis of the systems / components that can benefit from these technologies is required in order to define the technology / combination of technologies that result in the largest payoff. Understanding the technical and cost relationships between innovative composites and the spectrum of components that they can improve provides alternative design and manufacturing approaches for groups / families of components currently manufactured using GRP or steel on a broader level. This approach affords a comprehensive impact to cost /weight reduction initiatives compared to historical single component analysis. The deliverables developed because of this effort provide a valuable data attribute to be used by both the government and General Dynamics Electric Boat (GDEB) for performing design trades and component pricing estimates.

Implementation

The techniques and processes developed in this project were leveraged to composites currently on the submarine and to future efforts. This project demonstrated a production ready composite article that could transition at the end of this Manufacturing Science and Technology effort. Implementation is planned to occur with SSN 792 first.

*Prepared under ONR Contract xxxxxx-xx-x-xxxx as part of the Navy ManTech Program.

*DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. DCN# xxxx-xxx-xx